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Multipole expansion calculation of slow viscous flow 
about spheroids of different sizes 
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(Received 17 April 1978 and in revised form 15 January 1979) 

The multipole representation technique of Gluckman, Pfeffer 8: Weinbanm for slow, 
viscous, axisymmetric motion has been applied to a syst'em of two spheroids. The two 
particles may have different shapes and volumes. The limitations of this method have 
been studied through calculations of the drag forces and velocities of particles with 
aspect ratios from 0.1 to 10 and relative volumes J' from 1 to lo3. The multipole- 
expansion convergence is quite slow for large relative volumes and requires on the 
order of 4 x V i  multipoles. Wild fluctuations in the drag as the number of multipoles 
increases were found for large oblate spheroids. Relative velocities are given quite 
accurately for separations of the centres greater than 1.02 times the minimum 
separation. Comparisons are made with previous results and approximate theories 
for two spheres, for non-identical particles at  large separation, and for a sphere near a 
large spheroid. 

1. Introduction 
Recent experimental observations indicate that large agglomerates form when some 

magnetic colloids a-e exposed to uniform magnetic fields (Peterson et nl. 1975; 
Peterson 1975; Peterson & Krueger 1977). The experiments were interpreted in terms 
of the gravitational settling of agglomerates consisting of roughly lo* colloidal particles. 
The size of the agglomerates was deduced from observations of the terminal velocity 
and was found to depend significantly upon the applied magnetic field. If one assumes 
that the hydrodynamic drag force overcomes the magnetic force and is responsible for 
pulling particles off the agglomerate as it falls, one can calculate the agglomerate size 
as a function of applied magnetic field (Liao & Krueger 1979). To do this, one needs 
to know the drag forces on two spheroids of different sizes and shapes. The drag force 
on pairs of unlike, non-spherical particles is also applicable in problems of agglomera- 
tion of aerosol particles and removal of particulates from flows. A closely related prob- 
lem is to determine the motion of pairs or groups of particles in an external force field 
such as gravity. 

The slow viscous motion of particles in a fluid has a long history including the classic 
work of Stokes on the drag force on a single sphere,t see, e.g., Lamb (1932). Thedrag 
on single ellipsoids can also be found in Lamb. The two-particle problem is less 
tractable, but Stimson & Jeffery (1926) presented the solution for the drag on two 
unequal spheres moving with the same velocity in terms of an infinite sum. Cooley & 
O'Neill (1969) gave numerical values for these forces for spheres of different sizes 

t Oseen corrections are ignored. 
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moving along their line of centres at various separations. Wacholder & Sather (1974) 
calculated the velocities of pairs of unequal spheres moving in a fluid under gravity. 
These calculations on pairs of spheres are not generalizable to other particle shapes or 
to more than two spheres because they depend upon the existence of an exact solution 
in bispherical co-ordinates. A more general formulation introduced by Youngren & 
Acrivos (1  975a) is in terms of a linear integral equation for the distribution of Stokeslets 
over the particle surfaces. They have used this technique to calculate the rotational 
frictional coefficients for ellipsoids and a benzene-like shape (1975b) and to calculate 
the shape of a gas bubble in a viscous flow (1976). For computation the integral 
equation is reduced to solving a set of linear algebraic equations for the surface-stress 
force, f(x), for a given geometry and velocity of the fluid on the surface of the particles 
(see equation (2.9) of Youngren & Acrivos, 1975a). They point out that one of the main 
advantages of this technique is that the matrix of the algebraic system need be 
inverted only once. However, the matrix must be inverted for each change in the 
geometry. In  addition the method is more complicated for two particles moving at 
different velocities under the influence of an external force such as gravity. In  that 
case the velocities are not known a priori but must be calculated. If the total drag 
force on each particle is assumed to be balanced by the gravitational force, then the 
integral of f(x) over a surface is fixed but f(x) must be calculated. This could be 
accomplished by taking an appropriate linear combination of the f’s calculated for 
two basic cases such as unit velocity on the first particle, zero velocity on the second 
particle and then vice versa. I n  view of these complications for our problem we have 
chosen to  use the collocation technique. 

A set of linear algebraic equations is also the result of a collocation approach intro- 
duced by O’Brien (1  968) who expanded the stream function as a truncated series of 
separable solutions in spherical co-ordinates. Bowen & Masliyah (1 973) generalized 
this by using a series of separable solutions in spheroidal co-ordinates for single closed 
bodies of revolution. Gluckman, Pfeffer & Weinbaum (1971) used a similar series 
representation of the stream function to calculate the drag on two or more identical 
spheroids aligned along the direction of fluid flow. In  the collocation approach the 
stream function is approximated by a truncated series of multi-lobular disturbances. 
The accuracy of the representation is systematically improved by the addition of 
higher-order multipoles. The coefficients in this expansion are determined by satisfying 
the boundary conditions at a finite number of points, i.e. by solving a finite set of 
linear equations. The number of multipoles required for a given accuracy is not known 
in general. However, for two or more touching identical prolate spheroids, the error 
in the drag force was less than 2.5 yo when only the first two multipoles for each 
particle were included. For an arbitrary convex axisymmetric particle Gluckman, 
Weinbaum & Pfeffer (1972) used the collocation technique with a superposition of 
oblate spheroid solutions. The collocation-multipole expansion technique has been 
used to investigate unsteady forces (Basset, virtual mass, and acceleration) for chains 
of identical spheres falling along the chain axis (Leichtberg, Weinbaum, Pfeffer & 
Gluckman 1976c). These results have been used to understand the rouleaux formation 
by red blood cells (Leichtberg, Weinbaum & Pfeffer 19763) and to investigate the 
effects of walls (Leichtberg, Pfeffer & Weinbaum 1976a). Ganatos, Pfeffer & Weinbaum 
( 1  978) have also used this technique to study more general motions of identical spheres. 
Because of the success of this technique in those cases where identical particles were 
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considered, we have extended it to non-identical particles and have determined some 
of its limitations. 

To study the limitations we first calculated the drag on two touching spheres of 
different radii. These cases were selected (a )  because it is a severe test of the technique 
to handle the strong particle-particle interactions at contact and (a) because exact 
results are available for comparison. We have varied the number of multipoles and 
find that roughly V i  multipoles are required, where V is the relative volume of the 
spheres, We have also varied the location of the points where the boundary conditions 
are to be satisfied and find that as V increases the results become more sensitive to the 
location. In  the low Reynolds number limit, we have also calculated the velocity of 
axisymmetric gravitational settling of nonidentical spheroids as a function of their 
separation. From this one could calculate their motion as a function of time. A com- 
parison with analytic asymptotic results gives the region of applicability of the 
asymptotic formulas as well as testing the collocation calculation. 

We have introduced a renormalization procedure which minimizes a numerical 
difficulty encountered when including high multipoles. In  addition we show how to 
calculate the required Gegenbauer functions using single-precision, real arithmetic 
on the computer in place of double-precision, complex arithmetic as has been done in 
the past for oblate spheroids. 

In  the next four sections we review the basic formalism, give results for drag forces, 
give results €or settling velocities, and present our conclusions. Appendix A gives an 
analytic argument to estimate the number of multipoles required. 

2. Formalism 
Consider two spheroids moving along the x axis as shown in figure 1.  In  terms of the 

stream function, $, for the axially symmetric case the components of the fluid velocity 
along the x axis, U,, and radially outward, U,, are given by 

The no-slip boundary condition requires that the fluid velocity on the surface of a 
particle is the same as the velocity of that particle. The fluid velocity goes to zero as 
p = (x2+r2)4 goes to infinity. For two spheroids designated by S and L, we take a 
general solution as 

For spherical co-ordinates, $s is of the form 

$ = $S++-L. (2.2) 

For prolate or oblate spheroidal co-ordinates, the function yP is of the form (Gluckman 
et al. 1971;  Happel & Brenner 1973)  
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FICDRE 1. Axisymmetric motion of two spheroids. 

The function $L is given by a similar expression. Here I,(q) ad& H,(p) are Gegenbauer 
functions of the first and second kind respectively and are linear combinations of the 
Legendre functions of the first and second kind (P, and Q,). For each particle the p 
and q values are relative to a co-ordinate system with an origin at the centre of that 
particle. The x axis is always the symmetry axis and the particle intersects the x axis 
at a and the y axis at b.  For a prolate particle, a > b > 0,  c2 = a, - b2, x = c cosh 6 cos 7, 
r = c sinh 6sin.l) and p = cosh 6. For an oblate particle, b > a > 0, c2 = b2 - a,, 
x = csinhccosq, T = ccoshcsinr, p = isinhe and i = J-  1. In both cases q = COST, 

to < 5 f 00, and 0 < q Q T.  

We first consider the drag force on the particles when the velocities are equal to U. 
Defining A, by the expression (where j is either S or L) 

F, = 6npUb, A, (2.6) 

A, = 2D2,,/(3cjb, U). (2.0) 

where ,u is the fluid viscosity, Gluckman et al. (1 97 1) give 

This expression is also valid for spheres if one deletes the c, factor. 
Thus the total drag is completely determined by the first coefficient, D,, in the expan- 

sion (2.4). However, D, can be found only by applying the boundary conditions which 
involve all the other D’s and B’s. The essential assumption of the truncation technique 
is that D,, determined approximately by satisfying the boundary conditions through 
use of only a few multipoles (i.e. D’s and B’s), will not change appreciablyasadditional 
multipolea are included. For chains of identical particles, Gluckman et al. (1971) found 
that including only D,, B,, D, and B3 terms gave results accurate to 2.5 yo. The present 
work focuses on the convergence for two particles of different sizes and shapes. 

,, B,+, ,. Similarly 
+hL is truncated to include terms D2,s, B,, , through Dn+l, L, B,+l, L. This gives 2 ( n  + m )  
D’s and B’s to be determined. These coefficients are determined by requiring that 
+h satisfy the two boundary conditions (from the two components of the velocity) on 
Ns points on the S particle surface and NL points on the L particle surface, where 
NE -$ NL = n + m. We have further taken N, = m and NL = n. 

Firstly is truncated to include terms D2, s, B,, , through 

This yields the matrix equation 
M D = R  (2.7) 
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FIGURE 2. Schematic diagram of equation (2.7). 

with M equal to an N x N matrix and D and R equal to vectors of length N = 2(n + m). 
D is the vector of unknown coefficients (Dz,s, B2,s, . . . , Dz, L, . . .). The fist 2m 
elements of R are proportional to the velocity of the S particle and the last 2n elements 
are proportional to the velocity of the L particle.? 

The elements of M are given by Gegenbauer functions of the first and second kinds 
(I,(q), H,(p)) and their derivatives. H,(p) and its derivative become extremely small 
for large p (1p1 = a/c on the surface of the particle) as well as large n. Thus including 
more multipoles increases the chance of ill-conditioning in the solution to (2.7). For 
example, for two touching, almost spherical particles with relative volume V = lo8, and 
n = m = 12, there exists 7 3  orders of magnitude difference between the largest and 
smallest elements in the matrix M . Instead of going to an iteration matrix reduction 
scheme plus double-precision arithmetic as suggested by Gluckman et al. (1971),  the 
ill-conditioning can be reduced dramatically with a renormalization. Equation (2 .7 )  
is shown schematically in figure 2 ,  where I, I1 and IV  have ( 2 m )  rows obtained by 
satisfying boundary conditions on m points on the S particle surface and V, VI  and 
VIII have (2n) rows obtained by satisfying boundary conditions on n points on the 
L particle surface. The renormalization takes three steps. The first step is to make the 
elements in I V  and VIII have the same order of magnitude. This is done by dividing 
elements in V, VI and VIII by a constant. The second step is to make the first elements 
in 111 (Dz, s) and VI I  (Dz, L) have the same magnitude. This is done by dividing elements 
in I1 and IV by a constant. Finally, the first row elements of I and VI  are multiplied by 
constants to make them unity, while the elements of the D vector are divided by these 
same constants. In the example mentioned above this brings the elements of I, I1 and 
V I  to within about four orders of magnitude. For the S particle being theba l l e r  
particle, the first column of V is of the same order as I, 11, and VI but subsequent 
columns decrease rapidly. This is a resuIt of higher multipoles of $s becoming smaller 
as one moves away from the smaller particle. 

Finally often it is convenient to calculate the Gegenbauer functions of the second 
kind and their derivatives [i.e. H,(p) and HA@)] by using the recursion relation 
downward for &(p) [H,(p) and HA@) can be found from &,(p)] rather than upward as 
was done in some cases by Gluckman et al. To calculate &,(p) to more than 15 place 

t Note that since the velocities and D,  appear linearly in (2.7) it follows that the magnitude 
of the drag is the eame for the S particle following or leading the L particle. 
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accuracy for 0 < n < 50 andp  2 1.09, one takes Qeo(p) = 10-*0 and Q8&) = 10-801. 
and calculates QE8, . . . , Qo using the recursion relation. Finally one multiplies all the 
values obtained by the constant required to make Qo its known value (i.e. obtained 
from equation (2.12)). 

For oblate spheroids p is purely imaginary. This led Gluckman et al. (1971) to use 
double-precision complex arithmetic to calculate Hn(iy), where y is real. For computa- 
tions we define &, and &, by 

Hn+,(p) = Jn&n(IpI), ( 2 .84  

Qn-ltP) = sn&n(IPl), (2.8 b )  

where 8, = + 1 for the prolate case. For the oblate case ( p  is imaginary) we have 
8, = 1 for n even and 8, = i for n odd. Note that p 2 1 for the prolate case and p / i  2 0 
for the oblate case. The Bn and &, are real quantities. This leads to the recursion 

(2.9) 
- 

(n+ 1) &%+a = (2n+ 1)  I P I  @+'&n+l-nn&n, 

where a = + 1 for p real (prolate) and (T = - 1 for p imaginary (oblate). gn and its 
derivative are obtained from the &'s as 

(2n+ 1)Bn = &n-&n+z (2.10) 

and aBn/aP = - ann+l&n/8n- (2.11) 

For p real and greater than 1, Gautschi (1967) has shown that using the recursion 
downward is stable. We have used it downward for 1p1 > 1.09. For 1p1 < 1.09 we have 
used the recursion upward, where 

(2.12a) 

(2.12 b )  

and 02 = +lo,- 1. (2.13) 

To this point we have discussed the calculation of the drag forces if the velocities of 
the particles are specified. Next we turn to the calculation of the velocities of the 
particles when a specified external force is acting (e.g. gravity). As discussed by 
Leichtberg et al. (1976c), to leading order in Reynolds number, the drag force (47r,uD2/c) 
is balanced by the external force, which is $7r(po - p )  ab2g in the case of gravity. Herep, 
is the density of the solid, p is the density of the liquid, and g is the acceleration due to 
gravity (980 cms-2). This gives 

Dz = (P0-P)s~2/(3cL).  (2.14) 

This equation is valid for prolate and oblate spheroids. We can include spheres if we 
delete the c factor. Using this expression for both DZ,, and D2,L in the MD = R 
equation results in linear equations which may be solved for B , ,  D3,,, ..., Bz,L, 
D,,, ..., U, and VL. 

7 can be replaced by m y  small number. Then 

= u P m + ~ Q m  and 10-8O = aP8p+f9Q8,, 

where P, is the Legendre function of the first kind. Since P ,  
equations guarantee that u is very small and what we compute is basically /3Qn for n 5 60. 

Q8* for large arguments these 
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3. Numerical results for drag forces 
(a) We first consider two touching particles to illustrate some of the limitations of 

the method. In  all calculations the motion is along the line of centres. Within the 
approximation of continuum fluid mechanics, it takes an infinite force to separate 
two particles in contact as has been discussed by Leichtberg et a,?. (1976~) .  Thus 
the two particles will move at the same speed. In  this section we calculate the 
resulting dimensionless drag coefficient A. We consider (1) the sensitivity to the loca- 
tion of the points where the boundary conditions are imposed for two spheres, (2)  the 
optimum number of multipoles for two spheres, and (3) the drag on non-spherical 
particles. 
As a check on the computer code we have calculated the drag on two identical 

particles. We have reproduced the results given by Gluckman et al. (1971) for combina- 
tions of aspect ratios (K = b/a = 1,0.5,5.0), separation of centres (dola+ 2 = 1,4,16), 
and numbers of points N, = N, = 6, 8, 10, 12). Calculations for widely separated 
particles with K = 0.1, 1, and 10 and relative volumes of 1 and lo3 were also checked. 
In  addition we find consistent results for a small sphere touching a large nearly 
spherical particle (relative volume = lo3) using K, = 0.99, 1.0, or 1.01. 

(b) To determine the optimum number and locations of the collocation points we 
consider two touching spheres because exact results are available for comparison. We 
have considered several sets of angles of the points where the boundary conditions are 
applied. Note r] = 0 is the + symmetry axis, 2, and r] = lpr is along r in figure 1, and 
r ]  = n is the - x axis. Unless otherwise noted we follow Gluckman et al. (1971) and take 
points as mirror image pairs about r ]  = ST. For r] odd, the mirror image of the smallest 
r ]  point is omitted. The pair of points closest to 7 = &T are chosen to be very close to 
the highest point on the generating arc to represent the projected area normal to the 
direction of the flows and at the same time to avoid the singularity problem a t  
r] = in = 90". We take points a t  89' and 91". If the number of pointsisgreater than 2, 
we place points at 7, and n - 7,. The interval between r] ,  and 89" is divided into equal 
intervals, r] ) ,  for sets of angles A,  B, and C. We take r] ,  = r ] )  for set A, r] ,  = 1" for set B, 
and 7, = 6O for set C. The set of points used by Gluckman et al. is denoted by G and is 
obtained by taking 9, = 7) = n / N  and taking a point a t  89". Sets G and A differ only 
in that they take equal division of 90" and 89" respectively. 

Table 1 gives the results for A, and A, for identical spheres in contact. The exact 
value given by Cooley & O'Neill (1969) is 0.645141. For N, = N, we have entered 
A, = A,. For N, + N, the upper number is A, and the lower number is A,. Of course As 
should still equal A,. From table 1 the average of A, and A, is very nearly the exact 
value but for NL + N ,  set A gives the best results for the values of A, and AL. Other 
calculations for touching spheres with relative volume of lo4 and with Ns = 4 and 
N, = 4,8,12,16,24,32, and 40, also show that set A gives the most reliable results. 
This may be contrasted with a calculation by Leichtberg et al. (1976~)  for identical 
spheres having a relative velocity. They found that angles closer to the symmetry axis 
gave better results when the spheres were almost touching. 

For touching spheres with relative volume of lo3, table 2 gives the value of As for 
combinations of N, and NL values using set A angles. The exact value is A = 0.036370. 
Two conclusions can be reached: (a) A, converges to the exact value as more multipoles 
are included, and (b) N, is relatively unimportant if N, 2 4. Since larger values of Ns 
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Ns NL A B c a 
2 2 
4 4 
8 8 

12 12 
4 8 

4 12 

4 24 

4 40 

0,66152 
0-64405 
0.64514 
0.64516 
0.64109 
0.64842 
0.64034 
0.64931 
0.64065 
0.64896 
0.64065 
0.64896 

- 
0.64770 
0.64568 
0.64514 
0.66572 
0.62652 
0-70646 
0.58760 
0.68991 
0.60320 
0.68822 
0-60479 

- 0.86152 
0.64767 0.64411 
0.64515 0.64487 
0.645 14 0.64514 
0.69029 
0.60284 
0.69405 
0.59927 
0.88459 
0-60818 
0.68474 
0.60804 

TABLE 1. Drag coefficients for touching identical spheres using different 
collocation points. The exact value is 0.646141. 

NL 2 4 6 8 

2 1.2948 1.7516 1.7577 1.7878 
4 1.5034 2.0553 2.0626 2.0626 
8 1.8598 2-6436 2.6520 2.6520 

12 2.0044 3.0827 3.0886 3.0880 
24 2-0774 3.6405 3.6270 3.6172 
32 2.0580 3.7863 3.8207 3,7978 

TABLE 2. Drag coefficient, As x loa, for small sphere following large sphere 
with relative volume of lo8. Set A angles were used. 

and NL increase the chance of ill-conditioning in inverting the M matrix, we take 
N, = 4 hereafter. 

To see the effect of bunching the collocation points on the large particle surfaces 
near the point of contact, every second point on the surface away from the contact 
point was moved to the surface near the contact point. They were distributed at equal 
arc lengths but a t  an arc length away from the symmetry axis and an arc length away 
from the set A point closest to the axis. This set is called set D. Set E has points at 89' 
and 91" with & the remaining points uniformly distributed on the surface away from 
the small particle and a of the remaining points uniformly distributed on the surface 
of the large particle near the small particle. The point closest to the symmetry axis was 
always one arc from the axis. The results are shown in figure 3 along with the set A 
results. The values of h increased with NL more rapidly and for set D were close to the 
exact value of NL = 9,lO and 11. Similar values using set A required NL 2 20. However 
sets D and E have wild fluctuations for NL 2 12 and 15 respectively. This is very 
dramatic in the values of A,, the drag coefficient for the large particle. For set D we 
have A, = 1.007, 0.9870, 0.9352, 3.591, 6-80 and 2.31 for iVL = 7, 9, 10, 11, 12 and 13 
respectively. For set E w e  have A, = 1.016, 0.8759, 1.001, 0.9563, 1.293 and - 1-681 
for NL equal to 11 through 16 respectively. Negative values also occur for set D at 
larger N, values. For set A the value of AL varies from 0.9981 a t  NL = 5 to 0.9964 for 
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NL = 23. For 23 6 NL < 41 we find A, = 0.9964. To avoid these fluctuations in values 
as Nt is varied we have used points placed symmetrically about r] = in in our subse- 
quent calculations. 

Other calculations for spheres with various relative volumes indicate that NL should 
be roughly 4 x V.) which is proportional to the ratio of the radii of the particles. As 
pointed out by a referee, this can be understood because ‘the scale length of the 
disturbance reflected on the rearward portion of the leading sphere determines the 
number of boundary points and the characteristic wavelength of the Gegenbauer 
functions required. The disturbance created by the trailing spheroid decays as 7-l and 
this fixes the characteristic length for the interactive disturbance for the leading 
spheroid’. A more formal, though still not rigorous, justification is presented in 
appendix A. 

(c) Results presented to this point indicate that we should use N, = 4 and set A 
angles with points symmetrically placed about r] = in. We now investigate the 
number of multipoles required for the large particle, NL, for relative volumes of 10, 
loe, and lo9 for K, = b,/a, = 0.1 and 10. For non-spherical particles set A points could 
be taken (a) as being separated by equal distances along the arc or (b) as being a t  
points separated by equal intervals in the angle 7. A ( p ~ i ~ r i ,  option (a) is attractive 
because it, in some sense, gives equal arc lengths equal weight. This argument is 
independent of the basic set of functions used in the expansion of $. Using option (a) 
we have calculated values for the drag coefficient for a small sphere in contact with the 
large particle as a function of NL. The results are shown in figure 4, curves (a) to (f). 
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FIGURE 4. Drag coefficient for sphere touching a spheroid. For relative volume 10: (a)  - - -, 1Ohs 
for K& = 0.1; ( b )  -, loa& for K~ = 10. For relative volume lo2: (c) - - -, lOhs for K& = 0.1; 
(d )  -, lo3& for K~ = 10. For relative volume 103; (e) ---, lOh, for K~ = 0.1; (f) -, 
5 x 1O9h, for K~ = 10; (9) 5 x lo3& for K~ = 10. For curves (a)-(f) the boundary conditions 
were applied at points separated by equal arc lengths. For curve (9) the angle 7 was divided into 
equal intervals. 

For K L  = 0.1 the curves are smooth and appear to be approaching avalue asymptotically. 
For K L  = 10, however, there is a numerical instability for large NL values. For relative 
volumes of 10 and 100 there is a plateau for 6 Q NL Q 19 and 16 < NL Q 19 which we 
take as indicating the value of A,. This is, of course, uncertain. For relative volume of 
1000 even an estimate is impossible. At the referee’s suggestion which was based on an 
argument presented by Gluckman et ai!. (1971), we calculated the drag for V = lo* 
using option ( b ) ,  i.e. equal 11 intervals. The results are shown in figure 4, curve (9). The 
fluctuations are significantly reduced for large values of ilk. Where the fluctuations are 
not large the two options agree. In  retrospect option ( b )  is to be preferred. 

As a partial check on these results, we calculated an approximate drag coefficient 
using the technique introduced by Goren & O’NeiIl (1971). They calculated the drag 
on a small sphere near a large sphere by first expanding the stream function assuming 
that the small sphere was not present. Expanding the stream function for the isolated 
L spheroid (oblate, prolate or sphere) moving a t  a velocity U, we obtain for r and 

(3.1) 
(x - uL) small 

yF* = - *Aor2(X - UL)2,  

where A0 = W m L )  (at/%) (Po-P)g/P.  (3.2) 
This agrees with Goren and O’Neill for spheres, i.e. b, = a,. Using the Goren and 
O’Neill expression for the drag force on the small sphere in terms of A,, we find an 
approximate value of 

4x4 = WO(h/%) (Po-P)9(3KEUtLP)-1, (3.3) 
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Relative volume 
4 r , 

1 10 102 10s 

0.747 0.615 0,465 0.35 
596 128 27.6 5.95 

0-641 0.318 0.123 0.036 
4.85 1.04 0.225 0.0485 
0.160 0.033 0.0058 
0.0890 0.0192 0.004 13 0~000890 

- 

TABLE 3. Drag coefficient, As, for particle touching L particle. 
Upper value is by collocation. Lower value is &A. 

where his the distance of the centre of the small sphere from the surface of the spheroid. 
They give a table of values forf,(h/a,). In  their derivation Goren & O'Neill treat the 
surface of the large particle as a planar surface. Thus we expect that A, will be most 
accurate for large relative volumes (V,/v,). Also i t  should be more accurate for large 
oblate particles than for large prolate particles. This is verified by table 3 which presents 
the values of h from the collocation calculation (upper value) and from equation 
(3.3) for several volumes and aspect ratios. These are for the small sphere in contact 
with the spheroid so h = a, andfo( 1 )  = 3.2295. Even for V = lo4 and K, = 1 ,  equation 
(3.3) gives a value 15 yo larger than the exact value. 

4. Numerical results for particle velocities 
We now calculate the velocities of two particles acted upon by an external force 

such as gravity. The particles are assumed to interact with each other only through the 
fluid flow. Previous calculations were for spheres of different sizes by Wacholder & 
Sather (1974) and for identical prolate or oblate spheroids by Gluckman et aE. (1971). 

(a) We have checked our computer code by duplicating the results of Gluckman 
et al. for identical particles with K = 0-2, 0.5, 1.0, 2 and 5 with separations of their 
surfaces of zero and 14a. A further consistency check was made for identical particles. 
The value of h from $ 3  and the value of U from this section must, because the particles 
travel at the same speed, satisfy 

hU = Wo--P)g/(6nPb). (4.1) 

This equation does not hold for nonidentical particles. Our results were also checked 
with those of Wacholder and Sather for spheres of relative volume of 125. 

(b) I n  general the relative motion of two spheres may be obtained by solving 

dljdt  = Us- U', (4.2) 

where Us satisfies (Leichtberg et al. 1976c) 

(4.3) 
and U, satisfies a similar equation. The names given to the terms on the right-hand 
side of this equation are gravitational force, buoyancy force, Stokes drag, virtual mass 
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force, and the Basset force. Leichtberg et al. ( 1 9 7 6 ~ )  have solved similar equations for 
three identical spheres for small Reynolds number flow. The Reynolds number is 
defined as Re, = 2aU,p/p, where U, is the terminal velocity of an isolated particle. For 
times up to 180a/U, they found that the inertial terms ( -  dUs/dt) could be dropped 
with about 1 yo error. For short times (up to about 50a/&) the Basset term could also 
be dropped with less than about 10 % error. They also argued that the values of A 
obtained in a steady-state calculation may be used. 

The calculation of the velocities, Us and U,, as outlined in 0 2 thus holds for short 
times, and one could calculate the separation Z(t) from the implicit equation 

t - t, = dl (Us - U&', (4.4) s:. 
where 1, is the separation at time 1,. 

(c) Before presenting the computer calculations we present analytic results which 
are valid for largeseparations. Happel & Brenner (1973) have discussed results obtained 
by Brenner (1964) for two widely separated particles. For two nonidentical spheroids 
aligned with a principal axis along the line of centres and with motion along the line of 
centres, using their results it is easy to show that 

us = u&+ (~o-~)ga,bE(3pl)-'+O(l-~), (4.5) 

where Us, is the terminal velocity of an isolated S particle. The expression for U, may 
be obtained from this by interchange of S and L subscripts. The terminal velocity is 

v, = a ~ 2 ( ~ o - p ) 9 f 3 ~ c ) - 1 c a c ~ ~ + ~ > 1 n [ e o + 1 ) / ~ o -  1)1-&0) ( 4 . 6 ~ )  

for a prolate spheroid and 

v, = ab2(p,-p)g(3~c)-'{8(1 -PW+P,+8po} (4.6b) 

for an oblate spheroid. For both cases p ,  = u/c. For a sphere we have 

V, = 2a2@, - p)  g (  @)-I. ( 4 . 6 ~ )  

(d )  We have calculated the velocities of two particles at various separations. The 
particles are uniform and have the same density, In  figures 5-10 we present 

(~s -Us t ) / (~ , t - -Us t )  and ( ~ L - ~ s ) / ( ~ L I - ~ s t )  

as a function of 111, 2 1, where 1 is the separation of their centres and I, = a, + a,. For 
large separations the particles approach their terminal velocity, so these two quantities 
approach zero and one respectively. For particles in contact U' = Us, and, if the 
L particle is much larger than the S particle, then these quantities approach one and 
zerorespectively. We have also plotted the expressions obtained by using the approxi- 
mate values of Us and U, from the previous section. From the figures it is seen that 
these approximate forms are best for K < 1 and for large relative volumes. 

These calculations use collocation points separated by equal distances (defined as 
an arc length) along the particle surface with the topmost points at  7 = 89' and 91". 
The lowest points are at one arc length away from the axis of symmetry. There are 
four points on the S particle. The number on the L particle, NL, varied with both the 
relative volume of the particles and their separation. The values are given in table 4. 
For 1/1, 2 1.2 the values of NL gave results for U, - Us which agreed to a fraction of a 
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1.0 

0.8 - 
0.6 - 
0.4 .-, - 
0.2 

0 

- 
I I I I I I I I 1 

1 1.2 1.4 1 4 2.2 2.6  
Ill0 

FIGURE 8. Velocity of S particles as a function of separation where &US (US- Ust)/(UAt- US,). 
Z/Z, = 1 for touching particles. V = 1.  (KS, K,) are (0.1, 1) for (a), (10, 1) for (b), and (10, 0.1) for 
(c). Broken lines from collocation. Solid lines from asymptotic expressions. 

--- ----- 
1.0 - ---- / H I T  

0.8 -/ 
I k 
I I 

O 1  1)11111111 1.2 1.4 1 4 2.2 2.6 

Ilr, 
FIGURE 6. Velocity of L particle as a function of separation where 

su,, i (U,- US)/(ULt- Us,). v = 1. 

per cent. For l / lo  < 1-2 larger NLwere used. The percentage change in U, - Us indicates 
the accuracy of the result. It is possible that even fewer points would give accurate 
results. The large percentage change for V = lo3, K~ = 10 and KL = 1 is because U, - Us 
is very close to zero at 2/lo = 1-02. Calculations of U,- Us for two spheres of relative 
volumes of 125 and 1000 were compared with values obtained using equation (3.2) of 
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I I I I I t I I I 
1.0 1.2 1 4 1.8 2.2 2 6  

1/10 

 FIG^ 7. (Us- Ust)/(ULt- Ust) for V = 10. 
KS = 1 and K~ = 0.1 for (d )  curves. 

Wacholder and Sather for nearly touching spheres. For V = 125 the collocation results 
for NL = 30 were larger by factors of 2.02, 1-28 and 1-04 for separations of 1/1, = 1.01, 
1.02 and 1.03 respectively. For V = lo3 the factors are 1.95, 1.27 and 1-07. Thus the 
difference of the velocities of nonidentical spheres a t  very small separations is not 
given accurately by the collocation technique. This result was previously discussed by 
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0.7 L 
I I I I I I I 1 I 

1.0 1.2 1.4 1 4 2.2 2.6 
I& 

~ 

FIGURE 9. (US- U,,)/(U,,- ust) for V = 1000. 

0.8 - 

1 1.2 1.4 I .'a 2.2 : 2.6 
1/10 

FIGURE 10. (U,-Vs)/(U,,-Us,) for V = 1000. 

Leichtberg et al. (1976~) for identical spheres. However, the percentage error in the 
individual velocities is quite small. 

Figures 5-10 show that the velocities calculated to first order inl,/lgivequitegood 
results for Us and U,- Us for 1 2 21,. Results for prolate particles are more accurate 
than oblate particles. 



V 

1 

10 

103 

TABLE 

KE 

0.1 
10 
10 
1 
0.1 

10 
1 
0.1 

10 

KL NLZ N 2  
1 4, 6 4, 6, 8, 12, 16 
1 
0.1 - I 

0.1 8, 10 8, 10, 12, 16, 20 
1 
1 
0.1 16, 18 16, 18, 22, 26, 30 
1 - - 
1 

- - 

- - - - 

- - 

&a* 

1% 
0.1 
5 

2.0 
0.6 

11 
1 
1 

300 
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A14 (UL/ V,,h .o 

O * S ~ o  1.226 

3.0 1.350 

0.2 1.044 
0. 1 1.011 
2 1.016 
0 1.000 
0.2 0.9990 

11 1.001 

0 1-am 

N;, the number of points on the L particle for 1/1, 3 *2 and for 111, --as than 1 . 
A, the percentage change in (U,- Us) as NL goes from its smallest value to its largest value for 
111, = 1.02 and 1.1. The ratio U'IU,, at 1/1, = 1.02. 

Computations were performed on a CDC 6400 and CYBER 172 with nominal single 
precision of 16 digits. IMSL (International Mathematical and Statistical Libraries) 
subroutine LEQT2F was used to solve the matrix equations. This uses the Crout 
algorithm for Gaussian elimination with equilibration, partial pivoting, and 'iterative 
improvement as required. 

5. Conclusions 
The collocation technique of Gluckman et a2. can be used to calculate the drag forces 

and axisymmetric motion of two spheroidal particles of different sizes and shapes, We 
have investigated the accuracy of these results as a function of (a) the number of 
collocation points, ( b )  the placement of the collocation points, (c) the shapes of the 
particles, (d )  the relative volumes of trhe particles and (e) the separation of the particles, 
General results and conclusions include: (i) For large relative volumes ( V  - 10s) and 
particles in contact the number of collocation points should be 4 on the small particle 
and approximately 40 on the large particle ( - 4 V 4 .  (ii) The points should correspond 
to equal angle, 7, increments with points a t  71 = 89" and 91" except perhaps for the 
most nonspherical (i.e. K < 0.1 or K > 10). (iii) Results for prolate spheroids converge, 
as a function of NL, slowly but uniformly. Results for oblate spheroids may have wild 
fluctuations. (iv) The number of points required drops significantly (by factor of N 4) 
for separations of the centres of the particles on the order of twice the minimum 
separation. (v) For these separations the expansions to first order in 1-1 from reflexion 
theory give more accurate results for prolate spheroids than for oblate spheroids. 
(vi) Reflexion theory improves as the relative volume increases. (vii) The technique of 
Goren & O'Neill ( 197 1) for the drag on a small sphere near a large sphere was generalized 
to include a small sphere near a large spheroid. These approximate expressions are 
better for oblate spheroids than for prolate spheroids. (viii) The velocities of two 
different particles is given quite accurately ( N fraction of a per cent) by the collocation 
technique, but the difference in the velocities is probably in error by over 100 yo for 
Z/1,  1.02 and relative volume of lo3. Three numerical improvements were introduced: 
(ix) A renormalization of the matrices reduced a possible 70 orders of magnitude 
difference in elements to a more manageable 4 orders of magnitude. (x) In  some cases 
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more accurate results for the Gegenbauer functions may be obtained more quickly 
using the recursion relation downward rather than upward as has been done in previous 
calculations. This is especially important when many multipoles are included for large 
relative volumes. (xi) For oblate spheroids Gegenbauer functions of complex argu- 
ments are required. We have given a scheme for calculating these using only real 
quantities. Items (x) and (xi) allow us to use single-precision, real arithmetic on the 
computer rather than double-precision complex arithmetic as has been done in the 
past. 

In  view of (a)  the number of choices to be made in 8 calculation (numbers of multi- 
poles for each particle, the locations of the collocation points) and ( b )  the dependence 
of these upon the relative volumes, the particle shapes, and separation, it is recom- 
mended that the results given above be used as guides and not as rigid rules. 

This work was supported by the Office of Naval Research through contracts 
N00014-67-A-0299-0020 and N00014-76-C-0250. 

Appendix A 
For two touching spheres of radii RL and Rs and RL B R,, the stream function may 

be taken as 

and 

with rL, 0, and r,, 0, as the spherical co-ordinates with the origin a t  the centre of the 
large and small sphere respectively. $a is the stream function for an isolated sphere of 
radius RL. In  general, to solve the problem completely, all the unknown constants 
(D,, B,, d,, and b,) must be retained to satisfy the no-slip boundary condition for all 
the points on the surface of two spheres. It will be demonstrated that d, depends 
significantly on D,, B,, . . , , D,, B,, where n is approximately RL/Rs. Note that d, is 
proportional to the drag force on the small sphere. For this, choose the approximate 
form:? a0 

$L = ( D , / Y ~ - ~ )  I,,(cos OL) and Ps = d,~,I,(cos O,), (A 2) 
n-e 

One boundary condition can be written as l/r = 0. On the surface of the large sphere, 
multiply $ by (I,(cos O L ) / (  1 - cos2 0,)) and integrate with respect to cos 0, from 
case, = - 1 to + 1 and set TL = RL to obtain 

(A 3) 
n(n - (RLn-S/d"+l) (( 2n + 1 )  d2- (2n - 1 )  Rk) d,, 

2(2n- 1 )  (2n+ 1 )  
D, = 

where d = RL + Rs. 

Including b, and B,  (n 3 2) in (A 2) and satisfying a@/ar = 0 in addition to $ = 0 on tho 
boundary makes the mathematics more complicated but the conclusion i s  tho same. 
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= 0 on all the points on the surface of the small sphere, multiply $ 
by (12(cos 8,)/( 1 - cos2 0,)) = 4 and do the integration with respect to cos 0, and make 
the following approximation: 

Similarly, since 

I,(cos BL) M I,(cos 8,) = riI,(cos @ , ) ) / T i ,  (A 4) 

and rL M d to obtain 
m 
C D,(Rs/d"-l) + d, = - :URi/RL. 

n=2 

Substituting (A 3) into (A 5), and making the approximation: 

(RL/d)" = (RL/(RL + R,))" M (1 - RS/RL)" M exp ( -  nR,/R,) (A 6) 

gives the following for the left-hand side of (A 5) : 

exp ( - 2nRs/RL) + d,. 1 n(n- 1) 
n=2 

Solving for d, gives 

Including more D,  and B, is equivalent to including more terms in the summation in 
(A 7). Terms in this summation are of order unity for n < RL/Rs and thus on the order 
of RL/R, terms are required and RJR, multipoles are required. 
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